Abstract

The performance of Fe(III)/H2O2 was extremely enhanced by a novel N-doped ligand dipicolinamide (Dpa) for removing various organic pollutants. This dramatic enhancement of contaminants degradation in Fe(III)-Dpa/H2O2 system under pH≥ 7 was ascribed to the coordinating capacity of Dpa to form the dissolved Fe(III)-Dpa/Fe(II)-Dpa, and the reductive capacity of Dpa to maintain the concentration of Fe(II), which made Dpa improve the catalytic performance of Fe(III) nearly twice as much as Fe(II). Dpa has a strong complexing ability than Cit, NTA, and EDTA to maintain the catalytic activity of Fe(III) without light. The single crystal of Fe-Dpa was obtained to reveal its structure activity relationship. Fe-Dpa was composed of four bonds of Fe-N and two bonds of Fe-Cl. The Fe-Cl bonds were labile sites, which was easily experienced ligand exchange with H2O2, resulting Fe-H2O2 bonds to initiate degradation reaction. The remaining Fe-N bonds were effectively planar, which had a large delocalized π electrons flow domain, enhancing the production of multiple reactive species, including iron(IV/V)-oxo species, HO· and O2-·. An empirical kinetic model of Fe(III)-Dpa/H2O2 system was established. In addition, the evaluation results of the toxicity of Fe-Dpa to larval zebrafish and chinese cabbage displayed that Fe-Dpa possesses low toxicity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call