Abstract

Hollow structures have attracted great interest in many areas for their diverse applications. In this work, a new catalyst with an open and hollow structure (Co3O4@CoMn2O4) is designed for selective catalytic reduction of nitrogen oxides by ammonia (NH3-SCR). The as-prepared hollow-structured catalyst provides a high surface area and has thin shells. Owing to its structural benefits, this catalyst exhibited enhanced nitrogen oxides (NOx) removal activity and better resistance to water and sulfur dioxide than cobalt manganate nanoparticles. It also has proved that both the Eley-Rideal and Langmuir-Hinshelwood mechanisms are present in the NH3-SCR process in this catalyst. The improved nitrogen selectivity after the addition of water and sulfur dioxide occurs owing to the inhibition of nitrous oxide formation through the Eley-Rideal and Langmuir-Hinshelwood mechanisms. The deep insight into the structure–activity relationship and the influence of water and sulfur dioxide on nitrogen selectivity provide a new perspective for constructing high-performance de-NOx catalysts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.