Abstract
Polo-like kinase 1 (PLK1) is a serine/threonine-protein kinase involved in cell cycle regulation and mitotic progression. Studies have shown that PLK1 is upregulated in many tumors and high levels are adversely related to a poor prognosis. Knocking down or inhibiting PLK1 results in synthetic lethality in PTEN deficient prostate tumors and Kras mutant colorectal tumors, further validating PLK1 as an oncotarget. Substrate recognition by PLK1 occurs through the Polo-Box Domain (PBD), which is a phospho-peptide binding site also responsible for subcellular localization. Much effort has been directed to target this kinase therapeutically through the ATP-binding site, and a few such inhibitors have advanced to clinical trials however with limited clinical efficacy. Moreover, it has been shown that a point mutation in PLK1 (C67V) confers dramatic cellular resistance to catalytic site inhibitors. An alternative approach to target PLK1 potently and selectively is through the PBD to block its protein-protein interactions. Through the REPLACE strategy, for converting peptide inhibitors into more drug-like non peptidic compounds, a PBD targeting compound series (“ABBAs”), has been identified and the key determinants of potency and selectivity elucidated through structure-activity relationship studies. In cellular experiments, the ABBAs were shown to lead to profound effects on the cell cycle, to inhibit tumor proliferation and overcome resistance of cells expressing the PLK1 C67V mutant to ATP-based inhibitors. These non-ATP competitive inhibitors of PLK1 were also used chemical biology probes to investigate the gene regulatory effects of PLK1, known to act on transcription factors such as p53.
Accepted Version
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have