Abstract

Coordination complexes of (2,6-Me2C6H3S)2Pb (1) with flexible bidentate ligands have been prepared to explore new bonding environments for Pb(II) thiolates. The reaction of 1 with a series of ethylenediamine and ethylenediphosphine ligands resulted in isolation of the adducts [(2,6-Me2C6H3S)2Pb]2(tmeda) (9), [(2,6-Me2C6H3S)2Pb]3(dmpe) (10) and [(2,6-Me2C6H3S)2Pb]2(dppe) (11) [tmeda = N,N,N',N'-tetramethylethylenediamine; dmpe = bis(dimethylphosphino)ethane; dppe = bis(diphenylphosphino)ethane]. The X-ray crystal structure of 9 shows a dinuclear species in which tmeda is chelating a ψ-trigonal bipyramidal S2N2 Pb centre via axial and equatorial sites. The structure of 10 displays a trinuclear structural unit in which dmpe is chelating a ψ-trigonal bipyramidal S2P2 Pb centre via equatorial sites. Compounds 9 and 10 also contain a second unique metal centre with ψ-tetrahedral S3Pb bonding motifs. The structure of 11 shows the dppe ligand bridging two Pb ψ-tetrahedral S2P metal bonding environments. Static (207)Pb solid-state NMR (SSNMR) spectra of 9-11 and [Ph4As][(PhS)3Pb] (12) were acquired with cross polarization (CP)-CPMG and frequency swept pulse (WURST)-CPMG pulse sequences, and the efficiencies of these pulse sequences are compared. The (207)Pb SSNMR spectra reveal that the lead chemical shift anisotropies (CSA) vary greatly between the different Pb sites, and are generally large in magnitude. DFT calculations are utilized to relate the orientations of the (207)Pb nuclear magnetic shielding tensors to the molecular structures, and to aid in spectral assignment where multiple Pb centres are present. The combination of X-ray diffraction, (207)Pb SSNMR and DFT is shown to be invaluable for the structural characterization of these important structural motifs, and should find wide-ranging application to numerous lead coordination compounds.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.