Abstract
We present an experimental and numerical study of a terahertz metamaterial with a nonlinear response that is controllable via the relative structural arrangement of two stacked split ring resonator arrays. The first array is fabricated on an n-doped GaAs substrate, and the second array is fabricated vertically above the first using a polyimide spacer layer. Due to GaAs carrier dynamics, the on-resonance terahertz transmission at 0.4 THz varies in a nonlinear manner with incident terahertz power. The second resonator layer dampens this nonlinear response. In samples where the two layers are aligned, the resonance disappears, and the total nonlinear modulation of the on-resonance transmission decreases. The nonlinear modulation is restored in samples where an alignment offset is imposed between the two resonator arrays. Structurally tunable metamaterials and metasurfaces can therefore act as a design template for tunable nonlinear THz devices by controlling the coupling of confined electric fields to nonlinear phenomena in a complex material substrate or inclusion.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.