Abstract

Implant-related follow up complications resulting from poor implant integration, delamination, chipping, mechanical instability, inflammation or graft-vs-host reaction may lead to low patient tolerance, prolonged care and sometimes leading to a second surgery. Hence, there is an urgent need for developing biomaterials which will help to overcome the above compatibility problems. Ti based alloys have been widely used for biomedical applications, due to their excellent properties, such as low modulus, high biocompatibility and high corrosion resistance. In order to further improve the physical, mechanical and tribological properties of these alloys, microstructural modification is often required. Hence, this study aims to develop and evaluate the structural and tribological behavior of Hot Isostatic Pressed (HIPed) and sintered Ti-6Al-7Nb samples containing niobium, which is less toxic and less expensive as compared to the usual alloying element, vanadium (Ti-6Al-4 V). The Ti-6Al-7Nb alloys were fabricated by using nanoparticle powders milled for different durations (2, 6, 12 and 18 h) to evaluate the effect of milling time on the morphological and structural properties. Friction and wear tests were carried out on the (HIPed) and finally sintered Ti-6Al-7Nb alloy samples, to evaluate their tribological properties under different applied loads (2, 8 and 16 N), with an alumina α-Al2O3 ball as a counter face using an oscillating tribometer. The physical characterization of the nanopowders formed using different milling times indicated that the particle and crystallite size continually decreased with increasing milling time, while the microstrain increased. It is observed that the friction coefficient and wear rate for the samples prepared by powders milled for 18 h and tested under 2 N were lowest with values of 0.25 and 1.51 × 10−2 μm3∙N-1 μm-1, respectively compared to other milled samples. This improvement in tribological properties is attributed to the grain refinement at high milling times. The antibacterial evaluation of the fabricated alloys showed an improvement in antibacterial performance of the samples milled at 18 h compared to the other milling times.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call