Abstract

(La0.6Pr0.4)0.65Ca0.35MnO3 system has been synthesized via a sol-gel route at different sintering temperatures. Structural, transport and optical measurements have been carried out to investigate (La0.6Pr0.4)0.65Ca0.35MnO3 nanoparticles. Raman spectra show that Jahn-Teller distortion has been decreased due to the presence of Ca and Pr in A-site. Magnetic measurements provide a Curie temperature around 200 K and saturation magnetization (MS) of about 3.43μB/Mn at 5 K. X-ray photoemission spectroscopy study suggests that Mn exists in a dual oxidation state (Mn(3+) and Mn(4+)). Resistivity measurements suggest that charge-ordered states of Mn(3+) and Mn(4+), which might be influenced by the presence of Pr, have enhanced insulating behavior in (La0.6Pr0.4)0.65Ca0.35MnO3. Band gap estimated from UV-Vis spectroscopy measurements comes in the range of wide band gap semiconductors (∼3.5 eV); this makes (La0.6Pr0.4)0.65Ca0.35MnO3 a potential candidate for device application.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call