Abstract
The methods for first-principles calculation of the structure and dynamics of clusters have now progressed to a point where clusters containing ca. 50 non-transition-metal atoms can be studied. As a paradigm, we studied the energetics of structural transformations in 13- and 55-atom Al clusters, which can assume both perfect icosahedral and cuboctahedral structures. Using the Car–Parrinello (quantum molecular dynamics) formalism, we found Al13 has a unique structure, a slightly distorted icosahedron, but Al55 has several inequivalent but energetically nearly degenerate structures. The degeneracy in Al55 is due to the short range of the effective interatomic interactions in a metallic cluster and should lead to floppiness at finite temperatures. A new accurate procedure for calculating ionization potentials (Ei) and electron affinities (Eea) within the Car–Parrinello formalism was developed and applied to Al clusters. Unfortunately, it appears that at least for some clusters, most notably for Al55, the Ei and Eea are very similar for different structural models of this cluster. A formulation and the first tests of a new multigrid-based method for real space electronic structure calculations are briefly described. This method should make possible calculations similar to the above for clusters containing transition metal and/or first-row atoms in the fairly near future.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have