Abstract

Plasma-enhanced atomic layer deposition was employed to grow aluminum nitride (AlN) thin films on Si (100), Si (111), and c-plane sapphire substrates at 250 °C. Trimethylaluminum and Ar/N2/H2 plasma were utilized as Al and N precursors, respectively. The properties of AlN thin films grown on various substrates were comparatively analyzed. The investigation revealed that the as-grown AlN thin films exhibit a hexagonal wurtzite structure with preferred c-axis orientation and were polycrystalline, regardless of the substrates. The sharp AlN/substrate interfaces of the as-grown AlN are indicated by the clearly resolved Kiessig fringes measured through X-ray reflectivity. The surface morphology analysis indicated that the AlN grown on sapphire displays the largest crystal grain size and surface roughness value. Additionally, AlN/Si (100) shows the highest refractive index at a wavelength of 532 nm. Compared to AlN/sapphire, AlN/Si has a lower wavelength with an extinction coefficient of zero, indicating that AlN/Si has higher transmittance in the visible range. Overall, the study offers valuable insights into the properties of AlN thin films and their potential applications in optoelectronic devices, and provides a new technical idea for realizing high-quality AlN thin films with sharp AlN/substrate interfaces and smooth surfaces.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.