Abstract

PurposeThis study aims to investigate the effect of temperature applied at the initial deposition of Aluminium Nitride (AlN) thin-film on a silicon substrate by high-power impulse magnetron sputtering (HiPIMS) technique. Design/methodology/approachHiPIMS system was used to deposit AlN thin film at a low output power of 200 W. The ramping temperature was introduced to substrate from room temperature to maximum 100°Cat the initial deposition of thin-film, and the result was compared to thin-film sputtered with no additional heat. For the heat assistance AlN deposition, the substrate was let to cool down to room temperature for the remaining deposition time. The thin-films were characterized by X-ray diffraction (XRD) and atomic force microscope (AFM) while the MIS Schottky diode characteristic investigated through current-voltage response by a two-point probe method. FindingsThe XRD pattern shows significant improvement of the strong peak of the c-axis (002) preferred orientation of the AlN thin-film. The peak was observed narrowed with temperature assisted where FWHM calculated at 0.35° compared to FWHM of AlN thin film deposited at room temperature at around 0.59°. The degree of crystallinity of bulk thin film was improved by 28% with temperature assisted. The AFM images show significant improvement as low surface roughness achieved at around 0.7 nm for temperature assisted sample compares to 3 nm with no heat applied. Originality/valueThe small amount of heat introduced to the substrate has significantly improved the growth of the c-axis AlN thin film, and this method is favorable in the deposition of the high-quality thin film at the low-temperature process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call