Abstract

Two series of boroaluminosilicate glasses having varying mole ratios of B2O3/Na2O (series 1) and B2O3/SiO2 (series II) were prepared by conventional melt-quench method. Based on 29Si and 11B MAS NMR studies, it has been established that for series I glasses up to 15mol% B2O3 content, Na2O preferentially interacts with B2O3 structural units resulting in the conversion of BO3 to BO4 structural units. Above 15mol% B2O3 for series I glasses and for all the investigated compositions of the series II glasses, silicon structural units are unaffected whereas boron exist in both trigonal and tetrahedral configurations. Variation of microhardness values of these glasses as a function of composition has been explained based on the change in the relative concentration of BO4 and BO3 structural units. These glasses in the powder form can act as efficient room temperature ion exchangers for metal ions like Cu2+. It is seen that the ion exchange does not affect the boron and silicon structural units as revealed by IR studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.