Abstract

The importance of bogie fatigue in railway rolling stock has been recognized as a contributing factor in structural failure. A bogie frame designed for Taipei rapid transit systems is analysed in order to confirm the technical strength requirements for static and dynamic loadings. A numerical finite element analysis is utilized in view of the complex geometry, and detailed plots are also presented in this report to give a complete understanding of the behaviour of the bogie frame. The von Mises stresses are adopted as equivalent stresses in the static strength calculation while the principal stresses are adopted in fatigue strength evaluation. Material yield stress and modified Goodman diagrams showing the permissible stress ranges are used as failure criteria respectively for static and dynamic loadings. It is demonstrated that the static strength and fatigue strength of the bogie frame satisfy the strength requirements specified by Taipei rapid transit systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.