Abstract
Target sizes of the renal sodium- d-glucose cotransport system in brush-border membranes of calf kidney cortex were estimated by radiation inactivation. In brush-border vesicles irradiated at −50°C with 1.5 MeV electron beams, sodium-dependent phlorizin binding, and Na +-dependent d-glucose tracer exchange decreased exponentially with increasing doses of radiation (0.4–4.4 Mrad). Inactivation of phlorizin binding was due to a reduction in the number of high-affinity phlorizin binding sites but not in their affinity. The molecular weight of the Na +-dependent phlorizin binding unit was estimated to be 230 000 ± 38 000. From the tracer exchange experiments a molecular weight of 345 000 ± 24 500 was calculated for the d-glucose transport unit. The validity of these target size measurements was established by concomitant measurements of two brush-border enzymes, alkaline phosphatase and γ-glutamyltransferase, whose target sizes were found to be 68 570 ± 2670 and 73 500 ± 2270, respectively. These findings provide further evidence for the assumption that the sodium- d-glucose cotransport system is a multimeric structure, in which distinct complexes are responsible for phlorizin binding and d-glucose translocation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.