Abstract

ObjectiveTo assess the impact of the quaternary ammonium antibacterial agent, Dimethyl-Hexadecyl-Methacryloxyethyl-Ammonium Iodide (DHMAI), on structural stability of an experimental resin composite after biological aging. MethodsExperimental resin composites containing 7.5% of DHMAI were incubated in a biological medium in the presence of a Streptococcus Mutans (SM) strain during 3 months. The physicochemical, mechanical, and thermal properties, before and after 3 months of aging, were evaluated using: Degree of Conversion (DC), Residual Functions (RF), Vitreous Transition (Tg), Thermal Expansion Coefficient (CTE) and thermal degradation using Fourier Transform Infrared Spectroscopy Analysis (FTIRATR), Differential Scanning Calorimetry (DSC), Thermo Mechanical analyses (TMA) and Thermo Gravimetric Analysis (TG). ResultsIncorporation of DHAMI increased DC and decreased RF. After aging, DHMAI decreased and slowed RF release. Incorporation of 7.5% DHAMI provided significant modification of the thermal behavior (Tg and thermal degradation) but did not affect CTE. After aging, DHMAI enhanced the structural stability and improved resistance against biodegradation compared to the control composite. SignificanceThe development of an antibacterial dental composite based on DHMAI improved its physical, mechanical, and thermal behaviors, possibly enhancing dental composite longevity. Results suggest that DHMAI could be used in the composition of other bioactive dental materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.