Abstract

The aim of this study was to evaluate the degree of conversion (DC) and the thermal stability of bulk-fill and conventional composite resins. Eleven composite resin samples were prepared to evaluate the DC, Vickers microhardness (VMH), mass and residue/particle loss, glass transition temperature (Tg), enthalpy, and linear coefficient of thermal expansion (CTE) using infrared spectroscopy (FTIR), microdurometer analyses, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and dilatometry (DIL). The data were subjected to statistical analysis, with a significance level of 95%. DC and VMH were not influenced by the polymerized side of the sample, and statistical differences were recorded only among the materials. Decomposition temperature, melting, and mass and residue loss were dependent on the material and on the evaluation condition (polymerized and non-polymerized). Tg values were similar between the composites, without statistically significant difference, and CTE ranged from 10.5 to 37.1 (10-6/°C), with no statistical difference between the materials. There was a moderate negative correlation between CTE and the % of load particles, by weight. Most resins had a DC above that which is reported in the literature. TGA, Tg, and CTE analyses showed the thermal behavior of the evaluated composites, providing data for future research, assisting with the choice of material for direct or semidirect restorations, and helping choose the appropriate temperature for increasing the DC of such materials.

Highlights

  • The aim of this study was to evaluate the degree of conversion (DC) and the thermal stability of bulk-fill and conventional composite resins

  • The resins showed no significant difference in % DC and Vickers microhardness (VMH)

  • A low positive correlation was found between DC and VMH, according to the evaluated surfaces

Read more

Summary

Introduction

The aim of this study was to evaluate the degree of conversion (DC) and the thermal stability of bulk-fill and conventional composite resins. Eleven composite resin samples were prepared to evaluate the DC, Vickers microhardness (VMH), mass and residue/particle loss, glass transition temperature (Tg), enthalpy, and linear coefficient of thermal expansion (CTE) using infrared spectroscopy (FTIR), microdurometer analyses, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and dilatometry (DIL). The data were subjected to statistical analysis, with a significance level of 95%. Decomposition temperature, melting, and mass and residue loss were dependent on the material and on the evaluation condition (polymerized and non-polymerized). TGA, Tg, and CTE analyses showed the thermal behavior of the evaluated composites, providing data for future research, assisting with the choice of material for direct or semidirect restorations, and helping choose the appropriate temperature for increasing the DC of such materials

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.