Abstract

During the course of biological function, proteins interact with other proteins, ligands, substrates, inhibitors, etc. These interactions occur at precisely defined locations within the protein but their effects are sometimes propagated to distal regions, triggering highly specific responses. These effects can be used as signals directed to activate or inhibit other sites, modulate interactions with other molecules, and/or establish inter-molecular communication networks. During the past decade, it has become evident that the energy of stabilization of the protein structure is not evenly distributed throughout the molecule and that, under native conditions, proteins lack global cooperativity and are characterized by the occurrence of multiple independent local unfolding events. From a biological point of view, it is important to assess if this uneven distribution reflects specific functional requirements. For example, are binding sites more likely to be found in well structured regions, unstable regions, or mixed regions? In this article, we have addressed these questions by performing a structure-based thermodynamic stability analysis of non-structurally homologous proteins for which high resolution structures of their complexes with specific ligands are available. The results of these studies indicate that for all 16 proteins considered, the binding sites have a dual character and are characterized by the presence of regions with very low structural stability and regions with high stability. In many cases the low stability regions are loops that become stable and cover a significant portion of low molecular weight ligands upon binding. For enzymes, catalytic residues are usually, but not always, located in regions with high structural stability. It is shown that this arrangement provides significant advantages for the optimization of binding affinity of small ligands. In allosteric enzymes, low stability regions in the regulatory site are shown to play a crucial role in the transmission of information to the catalytic site.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call