Abstract

In parabolic trough technology, the development of thermally and structurally stable solar coatings plays a key role in determining the efficiency, durability, and economic feasibility of tube receivers. A cermet-based solar coating is typically constituted by a thin film stratification, where a multilayer graded cermet is placed between an infrared metallic reflector and an antireflection filter. This work reports the realization of materials based on Al2O3 and W characterized by high structural and chemical stability in vacuum at high temperature, obtained through the optimization of high-deposition-rate processes. Al2O3 material, employed as the antireflection layer, was deposited through a reactive magnetron sputtering process at a high deposition rate. Cermet materials based on W-Al2O3 were deposited and employed as absorber layers by implementing reactive magnetron co-sputtering processes. An investigation into the stability of the realized samples was carried out by means of several material characterization methods before and after the annealing process in vacuum (1 × 10−3 Pa) at high temperature (620 °C). The structural properties of the samples were evaluated using Raman spectroscopy and XRD measurements, revealing a negligible presence of oxides that can compromise the structural stability. Spectrophotometric analysis showed little variations between the deposited and annealed samples, clearly indicating the high structural stability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call