Abstract

The main aim of doping DNA lattices with lanthanide ions (Ln-DNA complex) is to change the physical functionalities for specific target applications such as electronics and biophotonics. Ln–DNA complexes based on a double-crossover DNA building block were fabricated on glass using a substrate-assisted growth method. We demonstrated the structural stability of Ln–DNA complexes as a function of Ln ion concentration by the atomic force microscopy. The Ln ion doping in DNA lattices was examined using a chemical reduction process, and the electrical characteristics of Ln–DNA complexes were tested using a semiconductor parameter analyzer. The structural phase transition of DNA lattices from the crystalline to amorphous phases occurred at a certain critical concentration of each Ln ion. Ln ions in DNA lattices are known to be intercalated between the base pairs and bound with phosphate backbones. When DNA lattices are properly doped with Ln ions, Ln–DNA complexes revealed the complete deformation with chemical reduction process by ascorbic acid. The current increased up to a critical Ln ion concentration and then decreased with further increasing Ln ions. Ln–DNA complexes will be useful in electronics and photonics because of their unique physical characteristics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call