Abstract

The carboxy-terminal domain of the alpha subunit of Escherichia coli RNA polymerase, which is connected with the core part of RNA polymerase through a long flexible linker, plays decisive roles in transcription activation by directly interacting with a large number of transcription factors and upstream (UP) element DNA. Here we constructed a set of mutant RNA polymerases, each containing a mutant alpha subunit with an altered interdomain linker. Deletion of three amino acids from the linker exhibited 50% inhibition of cAMP receptor protein- (CRP-) dependent lac P1 transcription. Deletion of six amino acids completely knocked out the activity. Insertion of three amino acids did not affect the activity, whereas 40-60% inhibition was observed after insertion of one, two, or four amino acids. Substitution of 10 consecutive glycine residues resulted in nearly 90% reduction of the CRP-dependent activity, whereas 50% activity was retained after substitution of 10 proline residues or a sequence expected to form a strong alpha-helix. Essentially the same results were obtained with UP element-dependent rrnB P1 transcription. These observations altogether suggest that (i) sufficient length of the interdomain linker is required for transcription activation mediated by the alpha carboxy-terminal domain, (ii) the linker is not totally unstructured but has structural and torsional preferences to facilitate positioning of the carboxy-terminal domain to a proper location for the interaction with CRP and UP element, and (iii) CRP-dependent activation and UP element-dependent activation share a common intermediary state in which the positioning of the alpha carboxy-terminal domain is of primary importance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call