Abstract

The molecular dynamics in nanometer thin films of glycerol was investigated upon thickness reduction by combining organic molecular deposition with in situ broadband dielectric spectroscopy. Changes in the cooperative dynamics with respect to bulk glycerol were observed for films of thicknesses down to 1.6 nm (corresponding to roughly three molecular layers). Systematic investigation revealed no pure size effects addressable merely to geometrical constraints. However, an increase in the glass transition temperature by 3.5 K was observed for the thinnest film, indicating the presence of a layer with reduced mobility in close proximity to the substrate. The impact of both the upper and lower interfaces has been disentangled by measurements performed during slow desorption. Moreover, proof is given for the existence of a layer with enhanced mobility in the vicinity of the free surface enslaved to the dynamics of the rest of the film.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.