Abstract

We theoretically investigate structural relaxation and activated diffusion of glass-forming liquids at different pressures using both Elastically Collective Nonlinear Langevin Equation (ECNLE) theory and molecular dynamics (MD) simulations. An external pressure restricts local motions of a single molecule within its cage and triggers slowing down of cooperative mobility. While the ECNLE theory and simulations generally predict a monotonic increase of the glass transition temperature and dynamic fragility with pressure, the simulations indicate a decrease of fragility as pressures above 1000 bar. The structural relaxation time is found to be linearly coupled with the inverse diffusion constant. Remarkably, this coupling is independent of compression. The theoretical calculations quantitatively agree well with the simulations and are also consistent with prior work.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.