Abstract
The family of glutamate dehydrogenases include a group of hexameric oligomers with a subunit M(r) of around 50,000, which are closely related in amino acid sequence and a smaller group of tetrameric oligomers based on a much larger subunit with M(r) 115,000. Sequence comparisons have indicated a low level of similarity between the C-terminal portion of the tetrameric enzymes and a substantial region of the polypeptide chain for the more widespread hexameric glutamate dehydrogenases. In the light of the solution of the three-dimensional structure of the hexameric NAD(+)-linked glutamate dehydrogenase from Clostridium symbiosum, we have undertaken a detailed examination of the alignment of the sequence for the C-terminal domain of the tetrameric Neurospora crassa glutamate dehydrogenase against the sequence and the molecular structure of that from C. symbiosum. This analysis reveals that the residues conserved between these two families are clustered in the three-dimensional structure and points to a remarkably similar layout of the glutamate-binding site and the active-site pocket, though with some differences in the mode of recognition of the nucleotide cofactor.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.