Abstract

The molecular structure of the mutant form of the lipopolysaccharide of Aeromonas salmonicida was determined to contain an O-4 phosphorylated and O-5 substituted Kdo reducing group, and is proposed as the following: [molecular structure: see text] It was established that during the cleavage of this LPS with 1% acetic acid, to release the core oligosaccharide from the Lipid A portion, we obtained a degraded core oligosaccharide which eliminated its phosphate group with extreme facility. The precise molecular structure of this dephosphorylated core was deduced by electrospray mass spectrometry and is proposed as the following:[molecular structure: see text] Low energy collision ESI-QqTOF-MS/MS analysis of the dephosphorylated core oligosaccharide confirmed the presence of the O-5 glycosylated 4,8- and 4,7-anhydro derivatives of the enolizable alpha-keto-acids. The CID tandem mass spectrometric analysis of the heterogeneous mixture of the permethylated core oligosaccharide established the unreported methylation reaction on the diastereomeric 4,8- and 4,7-anhydro alpha-keto-acids and the complete permethylation and addition reaction of the O-5 glycosylated open chain reducing end terminal D-arabino-3-en-2-ulonic acid. The stereo-specific fragmentation routes obtained during the tandem mass spectrometric analysis permitted the precise sequencing of this dephosphorylated rough core oligosaccharide of the mutant LPS of A. salmonicida.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call