Abstract

We report herein the electrospray ionization mass spectrometry (ESI-MS) negative ion mode and low-energy collision-induced dissociation tandem mass spectrometry (CID-MS/MS) analysis of a mixture of lipid An isolated from the lipopolysaccharide (LPS) of a rough-resistant wild strain of the Gram-negative bacteria Aeromonas hydrophila grown in the presence of phages (SJ-55Ra). This investigation indicates that the presence of a mixture of lipid A acylated disaccharides, whose molecular structures were not relatively conserved, resulted from the incomplete LPS biosynthesis caused by the phage treatment. The heterogeneous lipid An mixture from the LPS-SJ55Ra was obtained following growth of the Gram-negative bacteria Aeromonas hydrophila (SJ-55R) in the presence of phages and isolation by the aqueous phenol method. Following hydrolysis and purification of the lipopolysaccharide, ESI-MS and low-energy CID-MS/MS analyses were performed on a triple-quadrupole (QqQ) and a Fourier transform ion cyclotron resonance (FTICR) instrument. ESI-MS analysis suggested that this lipid An mixture contained eight molecular disaccharide anions and three monosaccharide anions. This series of lipid An was asymmetrically substituted with ((R)-14:0(3-OH)) fatty acids located at O-3 and N-2 and with branched fatty acids: (Cl4:0(3-(R)-O-C14:0)) and (C12:0(3-(R)-O-(14:0)) at the O-3' and N-2' positions. Tandem mass spectrometric analyses allowed the exact determination of the fatty acid acylation locations on the D-GlcpN disaccharide. The MS/MS results established that it was possible to selectively cleave C-O, C-N, and C-C bonds, together with glycosidic C-O and cross-ring cleavages, affording excellent structural analysis of lipid A biomolecules.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.