Abstract
Realizing efficient and durable non-precious metal-based electrocatalysts for oxygen evolution reaction (OER) still remains a great challenge. Here, a multi-component composite of Co2P2O7-MoN/NC containing pyrophosphate, nitride, and nitrogen-doped carbon is successfully prepared via a facile two-step synthesis method. Combining the structural regulation between the active metal- and non-metal-based species, Co2P2O7-MoN/NC demonstrates superior activity and durability for OER, requiring an overpotential of 278 mV at a current density of 10 mA cm-2, a Tafel slope of 83.3 mV dec-1, and long-term stability over 100 h in an alkaline solution. Post-characterizations reveal that synergistic effect among stable Co2P2O7, partially dissolved MoN, N-doped carbon, and new-formed CoOOH nanosheets enable structural reconstruction, fast charge transfer, and formation of oxygen-containing intermediates, promoting the OER performance significantly. This work provides a promising pathway to tune multi-components to fabricate efficient transition-metal-based electrocatalysts in energy conversion applications.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have