Abstract

ZnS epilayers were grown on (1 0 0) semi-insulating GaAs substrates using an atmospheric pressure metal-organic chemical vapor deposition (CVD) technique under the atomic-layer epitaxy (ALE) mode. Atomic force microscopy (AFM) and photoluminescence (PL) measurements were carried out to find the effect of the II–VI ratio of the 30-nm thick ZnS epilayers and to investigate the thickness-dependent characteristics of ZnS epilayers with the thicknesses of 30 and 100 nm. While the II–VI ratio-dependent ZnS quality is consistent regardless of the measurement, the thickness-dependent epilayer quality is quite contrary depending on the measurement. This difference demonstrates the non-uniform distribution of the strain–relaxation in the ZnS epilayer along the depth.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.