Abstract

Basicities of 16 acyl compounds including selected aldehydes, ketones, esters, amides and ureas in the gas phase and in water were calculated with the Becke3LYP/6-31G ∗ method. Solvent effects were modeled using a polarizable electrostatic continuum representation of the solvent. The properties of the electron densities of protonated molecules were described by localized bond orbitals. Our results suggest that the carbonyl oxygen is the preferred site of protonation for all molecules studied. Calculated pKa values in water range from −12 for aldehydes to + 1.5 for ureas. They agree well with published experimental data. We found that a high basicity of acyl compounds at the carbonyl oxygen is coupled with a large amount of additional resonance stabilization at the carbonyl group. The protonation of the leaving group of esters, amides and ureas is less preferred, but the basicity difference between CO and -OR or -NR 2 decreases from esters to ureas. Calculated pKa values for this site range from −18 for esters to +3 for ureas. These values are often not accessible by experiment. The structure of carboxylic acid derivatives protonated at the leaving group is determined by prefragmentation of the molecules into an acylium ion or positively charged isocyanate and an alcohol or amine.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.