Abstract

The gas and aqueous phase complexation geometries, electronic interactions, and metal ion affinities of Zn2+, Cd2+, and Hg2+ metal cations with the two most stable conformations of l-proline complexes were studied. The complexes were optimized by density functional theory (B3LYP) using the 6-311++G(d,p) orbital basis set and relativistic pseudopotentials for the metal cations. The interactions of the metal cations at different nucleophilic sites of l-proline were considered as were three modes of interactions including salt bridged, charge solvated 1, and charge solvated 2, which are indicative of binding in a bidentate manner through the carboxylate group, carbonyl and hydroxyl oxygen, and carbonyl oxygen and the nitrogen atom of l-proline. All of the coordination patterns were characterized by both charge transfer and ionic interactions between l-proline and the metal cation. The metal ion affinity (MIA) and interaction energy were also computed for all of the complexes at both the gas and aqueous phases. Results showed that the order of MIA at the gas and aqueous phases are different. MIA order at the gas phase was in the order of Zn2+ > Hg2+ > Cd2+ whereas at the aqueous phase, the order of Zn2+ > Cd2+ > Hg2+ was obtained for MIA. The infrared stretching vibrational modes of the N–H and O–H groups of free l-proline were compared with l-proline–M2+ in both CS1 and CS2 coordination patterns at the gas phase and results showed a considerable shift to lower frequency during complexation process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call