Abstract

Strain-balanced InAs/InAs1−xSbx type-II superlattices (SLs) have been proposed for possible long-wavelength infrared applications. This paper reports a detailed structural characterization study of InAs/InAs1−xSbx SLs with varied Sb composition grown on GaSb (001) substrates by modulated and conventional molecular beam epitaxy (MBE). X-ray diffraction was used to determine the SL periods and the average composition of the InAs1−xSbx alloy layers. Cross-section transmission electron micrographs revealed the separate In(As)Sb/InAs(Sb) ordered-alloy layers within individual InAs1−xSbx layers for SLs grown by modulated MBE. For the SLs grown by conventional MBE, examination by high-resolution electron microscopy revealed that interfaces for InAs1−xSbx deposited on InAs were more abrupt, relative to InAs deposited on InAs1−xSbx: this feature was attributed to Sb surfactant segregation occurring during the SL growth. Overall, these results establish that strain-balanced SL structures with excellent crystallinity can be achieved with proper design (well thickness versus Sb composition) and suitably optimized growth conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.