Abstract
Germanium−perovskite oxide heterostructures have a strong potential for next-generation low-voltage and low-leakage metal-oxide semiconductor field-effect transistors. We investigated the atomic structure and electronic properties of Ge on perfect and defective (001) SrTiO3 by first-principle calculations. The specific adsorption sites at the initial growth stage and the atomic structure of Ge on the SrTiO3 (001) substrate have been systematically investigated. The surface grand potential was calculated and compared as a function of the relative chemical potential. The complete surface phase diagram was presented. The energetically favorable interfaces were pointed out among the atomic arrangements of the Ge/SrTiO3 (001) interfaces. The atomic structure and electronic properties of the intrinsic point defects were calculated and analyzed for the Ge/SrTiO3 (001) interfaces.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.