Abstract

High quality Ge-on-high-k oxide interface is essential to facilitate the high performance metal-oxide semiconductor field-effect transistors and monolithically integrated optoelectronics device performance. The atomic structure and electronic properties of Ge on perfect and defective (001) SrHfO3 are investigated by first-principle calculations. The amplitude of the surface rumpling for the SrO-terminated surface is much larger than that for HfO2-terminated surface, although both SrO- and HfO2-terminated surfaces are stable for a comparable range of the HfO2 chemical potential. The distance between the first and second planes compresses while that of the second and third planes expands due to the relaxation of the slab. We investigated systematically the specific adsorption sites and the atomic structure at the initial growth stage of Ge on the SrHfO3 (001) substrate. The top sites of the oxygen atoms are favorable for 1/2 (1/3) monolayer Ge adsorbate at SrO (HfO2)-terminated surface. We calculated the surface grand potential and presented the complete surface phase diagram. We also pointed out the energetically favorable interfaces among the atomic arrangements of the Ge/SrHfO3 (001) interfaces. The atomic structure and electronic properties of the intrinsic point defects were calculated and analyzed for the Ge/SrHfO3 (001) interfaces.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.