Abstract

Thermodynamic perturbation theories based on a power series in the inverse temperature have been proposed for studying the structure of square-well and square-shoulder fluids in various ranges, and the results have compared with those from computer simulations. The perturbation theory based on the hard-sphere reference system seems to reproduce the simulation data at high temperature. However, it fails in the region of low density and low temperature. On the other hand, the perturbation theory based on the high-temperature reference system, which incorporates both repulsive and short-range attractive/repulsive tails is in excellent agreement with simulation results and is more accurate than the perturbation theory based on the hard-sphere reference system. In particular, the perturbation theory based on the high-temperature reference system is the most successful for a square-shoulder fluid with a purely repulsive potential and is more accurate than the rational function approximation of Yuste et al. [Mol. Phys. 109 987 (2011)] for the whole density range. In this case, the convergence of the power series in the inverse temperature is seen to be quiet satisfactory even for low density and low temperature.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call