Abstract
Mixed micelles formed in aqueous solutions of nonionic surfactants n-dodecyl-hexaethylene-glycol (C12E6) and n-dodecyl-beta-D-maltoside (C12G2) have been studied using small-angle neutron and X-ray scattering (SANS and SAXS) and static light scattering (SLS). Apparent micelle molar masses obtained with SLS were analyzed with a model taking into account both micelle growth and interference effects. The analysis shows that pure C12G2 forms small globular micelles whereas C12E6 and the mixtures form elongated micelles of much higher molar mass. The elongated micelles grow with increased concentration according to mean-field theory, and the masses are larger for increasing amounts of C12E6. To describe the SANS and SAXS data for C12E6 and the mixtures, it was necessary to employ a model with coexisting spherical and spherocylindrical micelles. The SANS and SAXS data were fitted simultaneously using this model with core-shell particles and molecular constraints. All mixtures, as well as pure C12E6, can be described by this model, demonstrating the coexistence of spherical and cylindrical micelles. The spherical micelles are the same size in all samples, whereas the cylindrical micelles grow in length with the fraction of C12E6 in the samples, as well as with concentration, in agreement with the SLS analysis. The mass fraction of surfactant in cylindrical aggregates also increases with the fraction of C12E6 and with overall concentration. The analysis of the SAXS and SANS data for pure C12G2 shows that the micelles are disk-shaped. The presence of elongated micelles in pure C12E6 and in the mixtures demonstrates that the behavior of the mixtures is dominated by C12E6.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have