Abstract

We study the adsorption of some common atoms and molecules onto monolayer MoTe2 and the potential for adsorption to induce a structural phase change between the semiconducting 2H-based and metallic 1T′-based crystal structures of the monolayer. Using density functional theory with spin–orbit and van der Waals energy contributions, we determined energetically favorable adsorption positions and orientations on the two crystalline phases of monolayer MoTe2. We then obtained the formation energies for these adsorption reactions and found that atomic adsorption generally favors 1T′ metallic phases while molecular adsorption favors semiconducting 2H phases. The phase sensitivity of this material is due to a relatively small energy difference, approximately 31 meV per MoTe2 formula unit. We further find that the monolayer alloy MoxW1–xTe2 can exhibit some degree of molecular selectivity in phase changes, potentially providing the basis for molecular sensing applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.