Abstract
A stainless steel corrugated fins and flat-tube heat exchanger is designed, which has a plate-fin structure. To optimize the structural parameters of this exchanger, including corrugation angle, corrugation pitch and fin length, 3-D simulation model and test were proposed. The numerical results indicated that the corrugation angle significantly affects both on heat transfer performance and pressure drop. The fin with angle, A = 0~20?, have demonstrated the higher heat transfer efficiency, lesser gas condensation, lower pressure drop, higher outlet flue gas temperature in low T region, and no exceeding the distortion temperature in high T region. Corrugation pitch and fin length influence thermal and hydraulic characteristics, outlet flue gas temperature, and fin temperature. To improve heat transfer performance, and reduce the fin temperature in high T region and ease gas condensation in low T region, smaller corrugation pitch and shorter fin length were recommended in the low T region, whereas higher values were more reasonable in high T region. Noticeably, the heat transfer and flow characteristics were better in the high T region than the low T region. Therefore, higher priority should be given to the structural optimization in the high T region in order to in-crease the heat transfer enhancement
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.