Abstract
The boxicity of a graph G is the least integer d such that G has an intersection model of axis-aligned d-dimensional boxes. Boxicity, the problem of deciding whether a given graph G has boxicity at most d, is NP-complete for every fixed \(d \ge 2\). We show that Boxicity is fixed-parameter tractable when parameterized by the cluster vertex deletion number of the input graph. This generalizes the result of Adiga et al. (2010), that Boxicity is fixed-parameter tractable in the vertex cover number. Moreover, we show that Boxicity admits an additive 1-approximation when parameterized by the pathwidth of the input graph. Finally, we provide evidence in favor of a conjecture of Adiga et al. (2010) that Boxicity remains NP-complete even on graphs of constant treewidth.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have