Abstract
Monoacylglycerol lipase (MAGL) inhibitors are considered potential therapeutic agents for a variety of pathological conditions, including several types of cancer. Many MAGL inhibitors are reported in literature; however, most of them showed an irreversible mechanism of action, which caused important side effects. The use of reversible MAGL inhibitors has been only partially investigated so far, mainly because of the lack of compounds with good MAGL reversible inhibition properties. In this study, starting from the (4-(4-chlorobenzoyl)piperidin-1-yl)(4-methoxyphenyl)methanone (CL6a) lead compound that showed a reversible mechanism of MAGL inhibition (Ki = 8.6 μM), we started its structural optimization and we developed a new potent and selective MAGL inhibitor (17b, Ki = 0.65 μM). Furthermore, modeling studies suggested that the binding interactions of this compound replace a structural water molecule reproducing its H-bonds in the MAGL binding site, thus identifying a new key anchoring point for the development of new MAGL inhibitors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.