Abstract

Spiral tube is compact, efficient in heat transfer and can make full use of the annular space in the engine, so it can be applied to heat recovery under a variety of operating conditions. This paper developed a three-rate, one-dimensional model combined with simulations, experiments. It can be found that in the hydrogen prediction, the model has an error of 10 % from experiment and 0.91 % from literature; the increase in length from 0.5 m to 1.35 m increases methanol conversion by 7.97 %; the increase in spiral diameter from 4 mm to 7 mm increases methanol conversion by 9.35%; spiral radius from 40 mm to 70 mm, methanol conversion rate decreased by 5%; mass fraction of methanol decreased by 16 % when the pitch was increased from 5 mm to 20 mm. When diameter is 4 mm, length is 1 m, the MSR reaction rate reach 24.1 mol/m3/s, methanol conversion rate is 87.91 %. When spiral pitch is 10 mm, spiral diameter is 40 mm, methanol conversion rate can reach 91.83 %. The spiral tube reactor has a compact structure and can achieve 87.19 % methanol conversion and 0.0955 L/min H2 production at WHSV = 0.9 h−1 and S/C = 1.7.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call