Abstract

AbstractThin films of ZnS: Cu nanoparticles were deposited in chemical bath by a pH controlled solution synthesis technique. The copper concentration was varied from 0 to 0.1M%. XRD and SEM indicated variations in diffracted intensity and morphology with Cu concentration. The PL spectrum of the undoped ZnS nanoparticles showed emission peaks at 393 and 432nm that could be attributed to the intrinsic defect states of ZnS nanoparticles. For ZnS: Cu samples three peaks in the range of 390nm, 480nm and 525nm were observed. With increase in Cu concentration from 0.001 to 0.1M%, the peak position of 480nm and 525nm did not change, whereas 390nm peak red shifted to longer wavelength region to 422nm. In addition, it was found that the overall photoluminescence intensity reached maximum at 0.01M% and quenched with further increase in Cu concentration. Enhancement of blue and green light emission by seven and twenty fivefold respectively compared to undoped ZnS was observed in ZnS: Cu with optimal dopant concentration. Time resolved decay of photoluminescence showed faster decay for 390 – 420nm purple/ blue emission compared to green (525nm) Cu related emission which is in the microsecond time scale. Optical absorption measurements indicate enhancement of band gap (3.89eV) for undoped ZnS suggesting the quantum confinement effect in the developed nanoparticles of size below the Bohr diameter. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.