Abstract
The quantum confinement effect (QCE) plays a significant role in tuning the bandgap of the silicon nanowires (SiNWs) by converting from indirect to direct bandgap semiconductor. The QCE makes the silicon (Si) semiconductor suitable for efficient solar cell and optoelectronic devices. The QCE only occurs for the nanostructure of Si, whose diameter is lesser than Bohr's diameter (≈9.8 nm). Metal-assisted chemical etching (MACE) fabricates columnlike SiNWs array on the Si substrate through primary etching. Length of the fabricated NWs is in the micrometer range, and its diameter is much higher (d > 70 nm) than Bohr's diameter, which contradicts the existence of QCE in the NWs. However, secondary etching etches the sidewalls of the SiNWs forming Si nano-crystals and Si quantum dots on the NWs whose average size is lesser than Bohr's diameter. HRTEM image and mathematical analysis of the SiNWs, using Raman, XRD, and Photoluminescence (PL) characterization, calculate the average size of the nanostructures formed on the sidewalls. The analysis indicates nanostructures of size to be less than five nm, formed on the SiNWs due to secondary etching, the sole reason behind the origin of QCE.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.