Abstract
The structural, optical, and electrical transformations induced by hydrogen absorption and/or desorption in Mg-Ti thin films prepared by co-sputtering of Mg and Ti are investigated. Highly reflective in the metallic state, the films become highly absorbing upon H absorption. The reflector-to-absorber transition is fast, robust, and reversible over many cycles. Such a highly absorbing state hints at the coexistence of a metallic and a semiconducting phase. It is, however, not simply a composite material consisting of independent MgH2 and TiH2 grains. By continuously monitoring the structure during H uptake, we obtain data that are compatible with a coherent structure. The average structure resembles rutile MgH2 at high Mg content and is fluorite otherwise. Of crucial importance in preserving the reversibility and the coherence of the system upon hydrogen cycling is the accidental equality of the molar volume of Mg and TiH2. The present results point toward a rich and unexpected chemistry of Mg-Ti-H compounds.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.