Abstract

Microwave assisted co-precipitation method is used to synthesize copper oxide nanoparticles from various concentrations of CuCl2.2H2O (0.1 M - 0.5 M) precursors. Both CuO and Cu2O phases are observed from X-ray diffraction (XRD) pattern and further confirmed from Energy Dispersive X-ray Analysis (EDX) and selected area electron diffraction (SAED) data. The particle size of 43 to 27 nm determined from XRD data using Scherrer formula is in good relation with Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) images. The existence of reasonably uniform size and shape is clear from SEM. The band gaps determined from the UV-Visible absorption peaks and vibrational modes observed from Micro-Raman Scattering (MRS) analysis further confirm the presence of CuO and Cu2O phases. These results are also related to electrical conductivity at low temperatures which illustrate different types of conduction mechanisms. The samples show semiconducting behavior with improved electrical conductivity. Finally, the material is proposed to have applications in designing gas sensors and also in regulating electrical conductivity in drug delivery systems. Copyright © 2017 VBRI Press.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call