Abstract

Cobalt oxide (Co3O4) is one of the favorable nanoparticles (NPs) that possesses many remarkable properties so that it can be used in medicine, chemistry, environment, energy, information, industry, and so on. In this study, the crystalline Co3O4 nanoparticles (NPs) were successfully prepared by an efficient conventional method technique from an using different fuels. In the present paper, pure phase and well-dispersed Co3O4 were synthesized via the starch and aqueous ammonia solution in the stoichiometric fuel compositions. The structure and morphology of by way of organized Co3O4 nanoparticles were characterized by the structural analysis, electron microscopy studies, and optical properties studies. Magnetic properties exposed that the Co3O4 nanoparticles had ferromagnetic performance at room temperature with saturation magnetization of 71.09emu/g. The results revealed that the changing the precursor led to great effects on the crystal size, emission peaks, and the reaction time of preparing the Co3O4 NPs. The significant feature of this manuscript is that the effects of different precursors on the structural magnetic and optical properties of Co3O4 NPs were investigated for the first time. The average particle size of samples (A and B) 23.6 and 22.2nm, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.