Abstract

This work reports the structural, morphological and vibrational properties of titanate nanotubes and nanoribbons obtained from bidimensional structures by hydrothermal treatment of TiO2 in aqueous NaOH solutions. The physical properties of these as-synthesized and heat-treated nanostructures are discussed in comparison with their bulk (Na2Ti3O7 and Na2Ti6O13) counterparts. The results obtained from several characterization techniques allowed to conclude that the layers of both as-synthesized nanotubes and nanoribbons are isostructural to the Na2Ti3O7 compound. However, in the nanotubes, the chemical bonds are deformed because of the curvature of walls while in the nanoribbons the layers present structural disorder due only the size effects. The thermal behavior of titanate nanoribbons is similar to those observed for titanate nanotubes. When thermally treated titanate nanoribbons change to bulk with a phase mixing of Na2Ti3O7 and Na2Ti6O13. We conclude in this work that the chemical composition of both the titanate nanotubes and the nanoribbons is the same, Na2-xHxTi3O7·nH2O (0 < x < 2) and Raman spectroscopy can be used for an easy and quick identification of both morphology and structure changes of the nanosized titanates.

Highlights

  • Intensive investigations have been carried out on the physical and chemical properties of inorganic nanosized materials in the recent years.[1]

  • The vibrational spectra of NTTiOx and NRTiOx exhibit clear signatures which mean that both the morphology and the size of these nanostructures play key roles in the vibrational modes, allowing the use of both Raman and Fourier transform infrared (FTIR) to identify the morphologies of the titanates nanostructures

  • We have studied the thermal decomposition properties of titanate nanoribbons obtained via the hydrothermal method

Read more

Summary

Introduction

Intensive investigations have been carried out on the physical and chemical properties of inorganic nanosized materials in the recent years.[1]. The differences observed in the relative intensity of diffraction peaks for NRTiOx and Na2Ti3O7 bulk samples can be related to both texture and size induced effects.

Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.