Abstract

Background: It is well known that quantum dot-sensitized solar cells based on nanostructured semiconductor films are considered as a promising alternative to silicon-based solar cells. The aim of this paper is to investigate the structural and morphological properties of CdS/CdSe quantum dot sensitized photoanodes based on nanocrystalline TiO2 thin films considering their performance can reach an efficiency of 2.7%. Methods: TiO2 thin films were prepared on fluorine tin oxide (FTO) glass via the chemical route using commercial Degussa 25 and crystallized at 550°C. Furthermore, a layer of CdS and CdSe nanoparticles was deposited on the titania film by a sequence of successive ionic layer adsorption and reaction (SILAR) and chemical bath deposition (CBD) methods. After preparation, samples were analyzed using X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM) and Raman spectroscopy for their structural properties and composition. Scanning electron microscopy (SEM) was used to investigate their surface morphology, while energy dispersive X-ray spectrometry (EDS) was used to analyze the sample stoichiometry. Results: The structural properties and morphology of quantum dot sensitized photoanodes revealed that the titania thin films were highly crystalline belonging predominantly in the tetragonalanatase structure, while the CdS/CdS quantum dots were in the cubic phase. Furthermore, scanning electron microscopy (SEM) along with energy dispersive X-Ray mapping EDS showed little contamination. Conclusions: Combined analysis suggests that our preparation route leads to highly crystalline, stoichiometric photoanodes. This plays an important role in the performance of the quantum dot sensitized solar cells.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.