Abstract
Mixed iron-based phosphate Na4Fe3(PO4)2P2O7/C (NFPP) has gradually emerged as a promising cathode material for sodium-ion batteries (SIBs) owing to its affordability and convenient preparation. However, poor electrical conductivity and inadequate sodium-ion diffusion limit the exertion of its electrochemical properties. Herein, a structural modulation strategy based on Cd doping is applied to NFPP to address the above limitations. In situ X-ray diffraction analysis reveals that Cd-doped NFPP (NFCPP) undergoes an incomplete solid-solution reaction driven by Fe2+/Fe3+ redox. Cd doping effectively stabilises the crystal structure, resulting in a minimal 1 % change in unit cell volume during cycling. Density of state calculations indicate that Cd doping reduces the band gap, increases the local electron density and significantly improves electron conductivity. Benefitting from the enhanced electrochemical kinetics and intercalation pseudocapacitance, the optimised Na4Fe2.91Cd0.09(PO4)2P2O7/C (NFCPP@3%) exhibits exceptional rate performance (capacity of 62 mAh/g at 20 C) and ultra-long cycling life (82.7 % after 6000 cycles at 20 C). A full SIB prepared using NFCPP@3% and hard carbon, display a 91 % capacity retention rate at a current density of 130 mA g−1 over 200 cycles. This work demonstrates that doping can effectively enhance electrochemical performance and offers insights into future development of SIBs.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have