Abstract
Recent experiments have reported an opposite sign of the differential surface stress produced on gold-coated cantilevers by a thiol-derivatized single-stranded DNA (SH-DNA) immobilization process. The sign of the surface stress depends on the method used to evaporate the gold thin film, being compressive (negative) or tensile (positive) for e-beam or resistively deposited gold, respectively. This study investigates the origin of this effect by means of a combination of x-ray diffraction and x-ray photoelectron spectroscopy. Both e-beam and resistively grown gold thin films are characterized to find the subtle differences responsible for this intriguing stress behaviour. Somewhat remarkably, these studies show a tight relation between the surface structure of the gold overlayer and the SH-DNA immobilization efficiency. The average grain size variation seems to correlate well with the differential surface stress triggered by the SH-DNA immobilization previously reported. These results suggest that the relation of the probe molecules with the surface structure must be considered to understand surface stress changes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.