Abstract

Heparan sulfate (HS) glycosaminoglycans are essential modulators of fibroblast growth factor (FGF) activity and appear to act by coupling particular forms of FGF to appropriate FGF receptors. During neural development, one particular HS proteoglycan is able to rapidly switch its potentiating activity from FGF-2, as neural precursor cell proliferation occurs, to FGF-1, as neuronal differentiation occurs. Using various analytical techniques, including chemical and enzymatic cleavage, low pressure chromatography, and strong anion-exchange high performance liquid chromatography, we have analyzed the different HSs expressed during these crucial developmental stages. There are distinct alterations in patterns of 6-O-sulfation, total chain length, and the number of sulfated domains of the HS from the more mature embryonic brain. These changes correlate with a switch in the ability of the HS to potentiate the actions of FGF-1 in triggering cell differentiation. It thus appears that each HS pool is designed to function in the modulation of an intricate interaction with a specific growth factor and its cognate receptor, and suggests tightly regulated expression of specific, bioactive disaccharide sequences. The data can be used to construct a simple model of controlled variations in HS chain structure which have functional consequences at a crucial stage of neuronal maturation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.