Abstract

Model building of the two photointermediates, lumirhodopsin and metarhodopsin I, and the activated form of rhodopsin, metarhodopsin II, is described. An outward swing of the C-terminal portion of transmembrane segment 3, pivoting on Cys110 at the N-terminal end of transmembrane segment 3, led to structural models of lumirhodopsin and metarhodopsin I. The conformation of the chromophore in the lumirhodopsin and metarhodopsin I models is controlled by the motion of transmembrane segment 3 and agreed closely with the hydrogen-bonding states of the protonated Schiff base in lumirhodopsin and metarhodopsin I as deduced from their FTIR and resonance Raman spectra and with the negative and positive CD bands of lumirhodopsin and metarhodopsin I, respectively. The structure of metarhodopsin II was constructed by an outward swing of transmembrane segment 3 and the rigid-body motion of transmembrane segment 6. The arrangement of the entire transmembrane segment of the metarhodopsin II model closely agreed with the electron paramagnetic resonance spectra of spin-labeled rhodopsin mutants and provided a structural basis for the protonation of Glu134, which is a key process in transducin activation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.