Abstract

Biodegradable, porous microspheres exhibit a wide range of release profiles. We propose in this paper a unifying approach based on the dual action of diffusion and erosion to establish which mechanisms are responsible for the variety of release kinetics observed during in vitro experiments. Our modeling procedure leads to the partitioning of the matrix into multiple, identical elements, thus simplifying significantly the mathematical and numerical treatment of the problem. The model equations cannot be solved analytically, since the domain contains a moving interface, and must therefore be solved numerically, using specific methods designed for that purpose. Our model confirms the major role that the relative dominance between diffusion and erosion plays in the release kinetics. In particular, the velocity of erosion, the effective diffusion coefficient of the drug molecule in the wetted polymer, the average pore length, and the initial pore diameter are sensitive parameters, whereas the porosity and the effective diffusion coefficient of the drug in the solvent-filled pores is seen to have little influence, if any, on the release kinetics. The model is confirmed by using release data from biodegradable microspheres with different ratios of low and high molecular weight PLA. Excellent goodness of fit is achieved by varying two parameters for all types of experimental kinetics: from the typical square root of time profile to zero-order kinetics to concave release curves. We are also able to predict, by interpolation, release curves from microspheres made of intermediate, untested ratios of PLA by using a relation between two model parameters.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call